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Abstract—We present a methodology to generate mixed-integer
linear approximations of the AC power flow equations governing
lines, transformers (including tap regulators and phase shifters),
shunt and series compensators, and consumption responsive
to voltage. Our motivation is to employ these models in grid
topology optimization of realistic power grids under abnormal
or uncommon operating conditions, where usual assumptions for
relaxing the power flow equations may not hold. The method
constructs piecewise linear approximations of the non-linear
power flow equations by minimizing the squared approximation
error over a subset of the feasible domain. We test the method
using a realistic database for the Chilean system (1548 buses, 1114
lines, 564 transformers). The resulting approximations yield root
mean square errors in the order of 0.05pu and are successfully
applied to solve a transmission switching instance for the system.

NOMENCLATURE

Parameters
gij,bi;  series conductance, susceptance of branch (i, j)
Sij thermal limit of branch (4, j)

VE VU upper and lower operational voltage limits

e, B, exponents of load response to voltage variations
of aggregated consumer c

Variables

v;, 0; voltage magnitude and angle of bus ¢

dij angle difference for branch (¢, j) (6;; = 6; — 6,)

pij , qjj active and reactive power entering branch (i, j)
at bus j

Uij energization state of branch (i, j) (u;; € {0,1})

wg, Y, voltage and phase shift tap changers at terminal
k of power transformers

De, Se, Qe active power consumption, active load shedding

and reactive power consumption of aggregated
consumer c
I. INTRODUCTION
The AC power flow equations, which can be expressed as
i = v7gij — viv;gs5 c0s(6:5) — vivsby sin(d5) (D
¢ = - v2b;j + vv;bi; cos(0i5) — vivigi;sin(di;),  (2)

for a simple branch, lie at the core of most optimization
models for planning and operations in power systems. For
high-voltage transmission networks under normal operating
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conditions, these equations are usually well approximated by
the DC power flow equations [1], which ignore voltage and
reactive power and focus only on angle differences and active
power. The DC power flow equations, however, fall short
when modeling systems where the ratio resistance/reactance
becomes high, or in conditions where reactive power plays
an important role, such as the outcome of topology changes
(either short-term transmission switching or transmission ex-
pansion planning), during widespread contingencies, or during
the restoration sequence following a blackout [2].

Different convex relaxations of the AC power flow equations
have been proposed, aiming to extend the application of opti-
mization technology beyond the validity of the DC power flow
equations. Jabr [3] introduces a second-order cone relaxation
of the AC power flow equations in polar form for distribution
networks. Bai et al. [4] propose a semidefininite programing
relaxation of the power flow equations in rectangular form.
Lavaei and Low [5] would later prove the semidefinite relax-
ation to be exact in many IEEE test cases. Farivar and Low [6],
[7] propose a second-order cone relaxation of the branch flow
equations, i.e. the power flow equations in terms of currents
and voltages (as opposed to power and voltages). Coffrin and
Van Hentenryck [8] present a relaxation that uses a polyhedral
outer approximation of the sine and cosine terms in the power
flow equations, and a first order Taylor approximation around
a given operating point to model the dependency with respect
to voltage. Coffrin et al. [9] extend the previous idea by using
a quadratic envelope for the cosine term.

Some of these relaxations have been applied to solve
combinatorial problems in power systems. In particular, Bien-
stock and Muioz [10] use a sequence of second-order conic
and semidefinite relaxations for solving an instance of the
transmission switching problem, while Hijazi el at. [11] used
a quadratic convex relaxation for solving the transmission
switching problem over a large set of standard test systems.

In contrast with previous work, our aim is to generate piece-
wise linear approximations (not necessarily relaxations) of
the feasible region defined by the power flow equations for
realistic systems. Since our ultimate goal is to embed these
approximations into larger combinatorial problems, the models
need to be as simple as possible, while still preserving the main
characteristics of the power flow equations. We aim for an



approximation that is valid for realistic systems under a wide
range of abnormal operating conditions, hence we cannot rely
on constructing an approximation around a given operating
point, neither can we assume that the system will be in scarcity
of reactive power, as done in previous methods for generating
piecewise linear approximations [8]. Instead, we generate our
approximations by minimizing the squared error in terms of
active and reactive power over a representative box of the
feasible domain for each branch. Using the approximations,
we propose mixed-integer linear programming (MILP) models
for transformers with tap regulators and phase shifters, series
compensators, and voltage-responsive load at distribution sub-
stations. These elements, while abundant in real systems, are
usually ignored in the literature.

Our main contributions are: (i) a new piece-wise linear
approximation of the feasible region defined by AC power
flow equations, (if) a new mixed-integer linear programming
model for elements of real systems, such as transformers with
tap regulators and phase shifters, series compensators and load
at distribution substations, and (iif) a computational study on
a realistic system (based on Chile, with over 1500 buses) that
illustrates the tractability and accuracy of our model.

The rest of the paper is organized as follows. Section
IT introduces the proposed technique to generate piecewise
linear approximations of the power flow equations. Section III
presents the proposed MILP models for transformers, reactive
compensators and consumers. Section IV presents a two-node
network example that ilustrates the differences between our
approximation and relaxations and approximations present in
the literature. Section V describes the Chilean system database
used in this study and presentes statistics on the approximation
for the Chilean system. Section VI presents the conclusions
of the present study along with directions of future research.

II. PIECE-WISE LINEAR APPROXIMATION OF AC POWER
FLOW EQUATIONS

Fitting piece-wise linear approximations to functions is a
widely studied problem in optimization. Two main approaches
are present in the literature: (i) a partition I of the interest
domain for the approximation, and a set of slopes a; and
intercepts b; for each ¢ € I [12]; and (ii) a max- or min-type
function with a set of slopes and intercepts (defining implicitly
the partition of the interest domain) [13]. In the following, we
opt for the first approach and restrict the partition to be boxes
for simplicity of the estimation process and of the derived
MILP formulations.

A. Approximation of function over a box in n-dimensions

Assume we have a continuous function f : R™ — R that
we wish to approximate with a piecewise linear function f :
R™ — R defined as

f@)=alz+bifel sz <aVl icl,

over the box between z” and =, respectively, the lower and
upper vertex of the interest domain. Let [zX, V] be the box
between ¥ and 2V ([x%, 2Y] = Uizl 2V)), F(i,7) be

the facet between the adjacent cells 7,5 and F the set of
adjacents pairs of cells. Then, the a;,b; for all ¢ € I that
minimizes the error can be determined using (3)—(4). The
objective function (3) corresponds to the squared total error of
the approximation over the interest domain, while constraints
(4) enforce continuity of the approximation.
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el i
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min

a,b

In practice, we approximate the integrals in the objective (3)
using the Gauss-Legendre quadrature along each dimension,
leading to a convex quadratic problem on a,b. The literature
[12] suggests to reformulate the continuity constraints (4) by
enforcing continuity on all the vertices of each facet, leading
to an exponential number of constraints per facet. Instead, we
reformulate constraints (4) for each facet F'(4, j) by enforcing
continuity on a set of n affine independent points within
F(i,7), which is a sufficient condition to ensure continuity
of the approximation. This reformulation of the continuity
constraints leads to a linear number of constraints per facet,
significantly reducing the problem size in higher dimensions.

B. Approximation of power flow equations of system branch

To generate approximations for the power flow equations,
i.e. to approximate p;’ (v;,v;,0;;) and ¢’ (vi,v;,0;;) as de-
fined in (1)—(2), using the procedure described in the previous
section, we first need to define the interest domain of the
approximation and the partition.

A naive selection of the domain can lead to infeasibility
of the approximation, as explained by the example of Fig. 1.
To prevent these problems we define the interest domain by
averaging inner- and outer-box approximations of the set of
feasible tuples (v;,vj,d;5), ¥, defined according to:

Qij = {(Uivvjv(sij) | VL <o < VUv p?(vivvjv(sij)2+

qi (vi, 05, 645)% < 83,k =i, j}.
We obtain an inner box by maximizing the volume of an
hyper-rectangle containing (v;,v;,d;;) = (1,1,0) and with
all its vertices within Q%. To obtain an outer box we maxi-
mize/minimize each coordinate of (v;,v;, d;;) while remaining
within 27, The lower and upper vertices of the inner and outer
box are then averaged coordinate-wise to obtain the lower and
upper vertices of the interest domain «* and 2V, which will
be different for every branch. As 0¥ is a non-convex region,
there might be points inside the interest domain which lie
outside Q. For those points, if they appear as knots of the
Gauss-Legendre quadrature during the approximation of the
integrals of (3), we assign them a weight of zero in order to
prevent them from biasing the approximation. Following [8],
we partition the interest domain only across the d;; coordinate,
whenever it is necessary depending on the resistance/reactance
ratio, as explained in Fig. 2. The partition is done by dividing
the range for §;; in intervals of equal cumulated curvature
of g; or p;’, depending on the resistance/reactance ratio, for
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Fig. 1. Approximation of the active power in line “P.Azucar 110kV” (part
of the Chilean system) between feasible limits [0.9,1.1] for voltage, shown
at v; = 1 and §;; = 0. The true active power is shown in black while
the approximation is shown in red. Horizontal blue lines correspond to the
thermal limits of the line. While the approximation behaves well across the
range [0.9,1.1], when restricted to the feasible domain it presents a significant
bias that can render the approximation of the power flow equations infeasible.
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Fig. 2. Effect of resistance/reactance ratio in the power entering a branch,
with v; = v; = 1. The top figure corresponds to a ratio of 1, while the bottom
figures correspond to ratios of 1/4 and 4 (from left to right). Active power
is presented in orange and reactive power in blue. For resistance/reactance
smaller than 2/3 we model the reactive power using a piecewise function and
active power as an affine function, while the converse is true for ratios greater
than 3/2. For 2/3 < resistance/reactance < 3/2 both active and reactive power
are approximated by affine functions.

v; = v; = 1. This results in an partition with smaller boxes
in zones with higher curvature, such as the valleys caused by
cosine terms in Fig. 2.

IIT. MILP MODELS OF POWER SYSTEM ELEMENTS

We adapt the multiple choice model, referred to as M2 in
[14], to approximate the power flow equations (1)—(2) for
a branch while accounting for topology changes, i.e. that
the branch can be de-energized. Using additional variables
uf; € {0,1} and 67, for ¢ € {1,...,Q}, the equations of the
multiple choice model to select the range of J;; can be written
as (5)—(7), where A;; is an absolute bound on d;;. Then the

power flow equations are approximated as (8) for qzj, with

analogous expression for pﬁj , if required. Here M£ @ Mg g are
bounds that consider that J;; becomes zero when the branch

is de-energized.

Q
Ujj = Zuij,q &)
qg=1
Q
—Aiy (1= i) < =8+ )0 < Ayj-(1—uy)  (6)
qg=1
Of - (1= wijg) <68 <67 - (1= i) (7)
M (1= i) < =¢7 + ag v + ag 20+

(lq’3(57?j + bq < Mz[]],q(l — uij,q) (8)
While equations (5)—(8) are sufficient to describe a generic
branch and its de-energization as an open circuit, real power
systems contain a range of other elements which are usually
simplified in common test cases, such as those used in [8], [9].
Next, we detail the elements we have found while working
with the realistic instance described in subsection V-A.

A. Shunt and series reactive compensators

Depending on the application, reactive compensators might
be installed as shunts in substations or in series with trans-
mission lines, to regulate reactive power. We consider 3 main
categories of reactive compensators:

« Shunt controllable reactive compensators: equipment with
power electronics that can control the reactive power,
irrespective of the voltage level. They can be modeled as
an injection of reactive power between certain bounds.

o Shunt sectioned reactive compensators: equipment such
as shunt capacitors or reactors, with multiple stages.
Their reactive injection depends linearly on the number
of stages connected and quadratically on the voltage.
By relaxing the discrete staging they can be modeled
as a variable injection of reactive power to the system,
bounded by a linear approximation of the squared voltage
over its operational limits.

o Series compensators: large reactors or capacitors con-
nected in series with transmission lines for operat-
ing under different load regimes. Unlike transmission
lines, however, when de-energized these elements are
not opened but short-circuited. Hence, in addition to
constraints (5)—(7), we also enforce constraints (9)—(12).

(VE-VY)ouyy <vp—vo; < (VE-VY)ouy 9)

—Agjuij < 0ij < Agjugg (10)
—2sijuij < pi +pj < 285U (1)
—2si5ui5 < qi + q5 < 255U (12)

B. Transformers, voltage tap changers and phase-shifters

The main intricacies that arise when modeling transformers
of an actual system are: (i) The nominal transformation ratios
of a transformer might not match exactly the base per unit
values of the system, e.g. there might be a 500kV/230kV
transformer connected between nominal levels 500kV/220kV,



which is resolved by introducing scale factors for the voltage.
(i) Voltage tap changers introduce additional modifications
to the voltage bounds that enter the power flow equations
(modifying Q%). (iii) Transformers can possess more than two
windings. A 2-winding transformer can be directly modeled
as a branch. We model an m-winding transformer with a star
model with m piece-wise linear functions (one per winding)
and two additional variables to represent the magnitude and
angle of the voltage at the node at the center of the star, vg, 6,
respectively. We model each winding k as a branch, using

Oko := ik) + & — bo,
M;fq(l —Uko,q) < —qio + aq,1 (Vi) + wr)+
aq,2V0 + aq,30} + by < Méj(l — Uko,q),
while also enforcing power balance at the center node of the
star.
C. Voltage-responsive demand at distribution substations
Passive loads typically change their consumption with volt-

age variations, following a monomial load model:

pet sl = Pervi(
ge = Qc - 'Uﬁcc) 'Pc/(Pc : viOEZ))v
where it is enforced that the same proportion of active and
reactive power are shed at the same time (implicitly assuming
that the load is homogenous). To retain this behaviour, we con-

struct linear approximations of the voltage terms ”?EZ ) vf(‘c )_O‘C,
which lead to constraints (13)—(14) for the load model.

Pe + sf = afvi(c) + bf (13)

1/a2qc — b [aZpe = pevi(e) (14)

Finally, the p.v;() product in the reactive consumption con-
straint is approximated by its McCormick envelopes [15].

IV. ILLUSTRATIVE EXAMPLE: ENERGIZING A LONG LINE

In order to illustrate the differences between the approx-
imation of the power flow equations proposed in this paper
and relaxations and approximations proposed in the literature
we employ the two-node network Fig. 3. For this network,
we would like to determine whether the line between buses
1 and 2 can be energized, while keeping the voltage at bus 1
fixed in 1 p.u. and the voltage at bus 2 between 0.9 p.u. and
1.1 p.u. This problem is important when designing restoration
sequences for power systems [16].

We use the QC relaxation [9], as an example of non-linear
relaxations, and the LP approximation [8]. Our selection of
the QC relaxation is based on (i) that it is stronger than SOCP
relaxations and (if) that SDP relaxations are computationally
too expensive to be included within combinatorial problems.

From circuit analysis, we obtain that in order to energize the
line, the generator at bus 1 will need to inject -119.9MVAr to
the network. As the generator can inject -80.7MVAr at best, the
line cannot be energized. The required (infeasible) operation
point for the line is indicated by a black circle in Fig. 4.
The QC relaxation finds that the line can be energized, due

Bus 1 Bus 2
| ] ° °
‘ - 1800MVA
500kV R =0.0025pu 500kV
X =0.0286pu
G =0pu
B =2.6888pu
290MVA

-75MVA -75MVA

Qmin = -80.7MVAr
Qmax = 73.8MVAr

Fig. 3. Single line diagram of the two-node network for long line energization.
This ficticial network is composed by elements of the Chilean system [17];
the generator correspond to unit 1 of the Pehuence power plant, and the line —
with its shunt reactors — correspond to circuit 2 of line “Ancoa - Alto Jahuel
500kV”. Values in p.u. use base 100MVA.
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Fig. 4. Feasible domains for q%2 as a function of 6, considering (1), (2) and
enforcing v = vé“c, for: (i) the QC relaxation [9], (i) LP approximation
(cold-start LPAC, 5 intervals) [8] and (ii) our MILP approximation (5 inter-
vals). For (i) and (ii) the red-shaded area, limited by dashed lines, indicates
the range of possible values for q}Q at each §. For (iii), the continuous red
line indicates the value of the approximation at each ¢. In all cases, the red
triangle indicates the solution (or infeasible point) obtained when considering
power balance at both buses, the black line indicates the true value of q%2 at
each §, and the black circle indicates the AC infeasible point.

to the convex envelope used to model the cosine term in (1)-
(2). The LP approximation overestimates the reactive power
consumed by the line because of assuming a unitary voltage,
leading also to the conclusion that the line can be energized.
Even without this overestimation, the LP approximation can
demand the injection of physically meaningless reactive power
because of the piece-wise linear envelope used to model the
cosine term. Finally, the MILP approximation constructed with
the procedure outlined in section II correctly identifies that
the energization of the line is not feasible. Cases where
the system is at excess of reactive power can appear locally
in a system due to congestion, line switching or during
power system restoration. As demonstrated by the example,



TABLE I
AVERAGE ERROR IN THE APPROXIMATION OF POWER FLOW EQUATIONS
FOR BRANCHES FOR DIFFERENT VALUES OF Q. RESULTS EXPRESSED IN
PU OF 100M VA BASE.

Lines Transformers
RMSE p [pu] RMSE ¢ [puy] RMSE p [pu] RMSE q [pu]
1 0.066 0.096 0.024 0.022
2 0.066 0.041 0.024 0.013
4 0.065 0.037 0.024 0.011

relaxations and approximations proposed in the literature may
lead to inaccurate evaluation of decisions in such scenarios.

V. NUMERICAL EXPERIMENTS

We implement the piecewise linear approximation method
in Julia [18], using JuMP [19] to formulate the mathematical
programs and Ipopt [20] as non-linear solver. We checked the
feasibility of the approximated power flow equations using
Gurobi to solve the resulting MILP problems.

A. A realistic test system: the Chilean network

We constructed a realistic database for the Chilean Cen-
tral Interconnected System (“Sistema Interconectado Central”,
SIC) using the information publicly available in the website of
the system operator [17]. The system consists of 1548 buses
with nominal voltages ranging between 0.3kV and 500.0kV,
1114 lines, 433 2-winding transformers, 131 3-winding trans-
formers, 159 shunt compensators, 14 series compensators, 297
generators and 605 loads. 509 out of the 564 transformers have
voltage tap changers, and there are 7 phase shifters.

The system contains very short lines, connecting neighbor-
ing substations. These lines were modeled as short circuits
in order to avoid numerical ill-conditioning. Among the lines,
we found 84 cases for which the ratio resistance/reactance was
greater than 1. For loads, the values of a. oscillate around 1,
while the values of . oscillate around 3, showing that reactive
power demand is very dependent on voltage variations.

B. Approximation results

We applied the method to generate approximations to the
Chilean network. The accuracy of the approximation for
branches of the network is presented in Table I. Using the
approximation with ) = 1 we were able to solve an AC
approximation of the transmission switching problem for the
Chilean network using Gurobi in 149 seconds.

VI. CONCLUSIONS

We presented a method for generating piecewise linear
approximations of the power flow equations based on least
squares fitting instead of approximations around an operating
point. We applied the method to a realistic database for the
Chilean grid, obtaining an average error in the order of 0.05pu.

Future extensions of the present work will include a detailed
test of the approximation in transmission switching instances
under contingencies and the application of the approximation
to the restoration and black-start allocation problem, which
is critical for systems in seismic zones such as the Chilean,
Japanese and California systems.
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